Nystrom
Algebra view: matrix, column space Geometric view: operators, image
From least square
Penrose-I
Projection
Consider an operator $A:\RR^n\to\RR^m$.
The question is: what is the orthogonal projection onto subspace $\operatorname{im}(A)$, i.e. what is $P_A$?
For any vector $u\in\RR^m$,
\[P_A u =A v\]for some $v\in\RR^n$ by the definition of $\operatorname{im}(A)$. By orthogonality, for any vector $w\in\RR^n$,
\[\left\langle Aw, u-P_A u \right\rangle =0 .\]This is equivalent to
\[\left\langle w, A^* u-A^*A v \right\rangle =0\]for any $w\in\RR^n$, so that
\[A^* u-A^*A v=0.\]If $A^A$ is invertible, we have $v=(A^A)^{-1}A^u$, and thus $P_Au=A(A^A)^{-1}A^*u$.
If $A^*A$ is not invertible, we can consider any inverse, for example the Penrose inverse and obtain the representation
\[P_A=A(A^*A)^\dagger A^*.\] \[A^*P_Au=A^*u\]In the world of matrices, $A\in M$ is a $m\times n$ matrix, $A^*$ is a $n\times m$ matrix.